On Bounds Available from Branch-and-Price Decomposition of the Multi-dimensional Knapsack Problem with Generalized Upper Bound Constraints

نویسندگان

  • Elif I. Gokce
  • Wilbert E. Wilhelm
چکیده

This paper describes and evaluates alternative branch-and-price decompositions (B&P-Ds) of the multi-dimensional knapsack problem with generalized upper bound constraints both analytically and computationally. As part of our theoretical analysis we compare the bounds available from B&P-Ds with three alternative relaxations (Lagrangean relaxation, Lagrangean decomposition, and Surrogate relaxation) and whether incorporating a surrogate constraint can make an improvement or not. Our computational tests compare alternative ways of implementing B&P-D to assess the trade off between the tightness of resulting bounds and the run times required to obtain them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Large-size Problems Through A

The Quadratic Knapsack Problem (QKP) calls for maximizing a quadratic objective function subject to a knapsack constraint. All coefficients are assumed to be nonnegative and all decision variables are binary. A new exact algorithm is presented, which makes use of aggressive reduction techniques to decrease the size of the instance to a manageable size. A cascade of upper bounds is used for the ...

متن کامل

A Comparative Study of Exact Algorithms for the Two Dimensional Strip Packing Problem

In this paper we consider a two dimensional strip packing problem. The problem consists of packing a set of rectangular items in one strip of width W and infinite height. They must be packed without overlapping, parallel to the edge of the strip and we assume that the items are oriented, i.e. they cannot be rotated. To solve this problem, we use three exact methods: a branch and bound method, a...

متن کامل

A generalized implicit enumeration algorithm for a class of integer nonlinear programming problems

Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...

متن کامل

Reoptimization in Lagrangian methods for the 0-1 quadratic knapsack problem

Abstract The 0-1 quadratic knapsack problem consists of maximizing a quadratic objective function subject to a linear capacity constraint. To exactly solve large instances of this problem with a tree search algorithm (e.g., a branch and bound method), the knowledge of good lower and upper bounds is crucial for pruning the tree but also for fixing as many variables as possible in a preprocessing...

متن کامل

A Partitioning Scheme for Solving the 0-1 Knapsack Problem

The application of valid inequalities to provide relaxations which can produce tight bounds, is now common practice in Combinatorial Optimisation. This paper attempts to complement current theoretical investigations in this regard. We experimentally search for "valid" equalities which have the potential of strengthening the problem's formulation. Recently, Martello and Toth [13] included cardin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007